Cryptanalysis of Two Lightweight RFID Authentication Schemes

Benessa Defend
UMass Amherst
defend@cs.umass.edu

Kevin Fu
UMass Amherst
kevinfu@cs.umass.edu

Ari Juels
RSA Laboratories
ajuels@rsa.com

Abstract

Vajda and Buttyán proposed several lightweight authentication protocols for authenticating RFID tags to readers, and left open the quantifiable cryptographic strength. Our cryptanalysis answers this open question by implementing and measuring attacks against their XOR and SUBSET protocols. A passive eavesdropper can impersonate a tag in the XOR protocol after observing only 70 challenge-response transactions between the tag and reader. In contrast, the theoretical maximum strength of the XOR protocol could have required $16! \times 2$ observed transactions to break the key. Our experiments also show that a passive eavesdropper can recover the shared secret used in the XOR protocol by observing an expected 1,092 transactions. Additionally, a nearly optimal active attack against the SUBSET protocol extracts almost one bit of information for each bit emitted by the tag.

1 Introduction

Low-cost RFID tags are used increasingly in widespread applications such as inventory control, transit systems, livestock management, and building access control. Cryptography can help prevent unauthorized communication between tags and readers in such applications. Vajda and Buttyán [9] developed several lightweight cryptographic protocols for low-cost tags. We show that their XOR and SUBSET protocols provide inadequate protection from passive and active adversaries.

1.1 Background

For their XOR protocol, Vajda and Buttyán [9] describe a possible passive attack that involves guessing the session keys by a brute force attack after observing two consecutive runs of the protocol. The attacker is able to learn the difference between consecutive session keys and formulate guesses on the subsequent session keys. In approximately $1/16^{th}$ of the cases, the session key will have a special property. Our first attack exploits certain statistical properties of the bitstring and determines the correct key value with high probability after observing an average of 70 transactions. Our second attack can fully recover the shared secret key in 1,092 expected guesses.

Vajda and Buttyán present an active attack against their SUBSET protocol, which requires more than 256 queries for their parameters. Our active attack requires only 9 queries under the same parameters. The attacker sends the tag a specifically formatted query and adaptively sends a subsequent query based on the previous response.

2. Vajda and Buttyán Protocol 1

Protocol 1 in Figure 1 is a challenge-response protocol in which the tag and reader share a secret, $k^{(0)}$. To construct a challenge, the reader selects a bitstring x uniformly at random. The reader transmits $a^{(i)} = x^{(i)} \oplus k^{(i)}$ to the tag, where i is the i^{th} transaction between the reader and tag. $k^{(i)}$ is calculated by a function of $k^{(0)}$ where $k^{(i+1)} = F(k^{(i)})$. Because $x^{(i)}$ is random, $a^{(i)}$ is also random. In an information-theoretic sense, $a^{(i)}$ reveals nothing about the secret $k^{(0)}$.

The tag uses its knowledge of $k^{(i)}$ to extract $x^{(i)}$. The tag then responds to the reader with $b^{(i)} = x^{(i)} \oplus k^{(0)}$. Knowing $x^{(i)}$ and $k^{(0)}$, the reader can verify the correctness of the tag’s response.

The protocol is considered broken when an adversary can send a valid $b^{(i)} = x^{(i)} \oplus k^{(0)}$ or learn the value of $k^{(0)}$. Vajda and Buttyán [9] note that a passive attacker can learn $k^{(i)} \oplus k^{(i+1)}$ after ob-
serving two consecutive transactions of the protocol. However, they suggest that an attacker must use a brute force attack to guess the session key \(k^{(i)} \) and completely break the protocol, which requires as many as \(16! \approx 2 \times 10^5 \) guesses, for the 128-bit example.

We demonstrate two types of attacks against Protocol 1. First is an active attack based on key sequence cycles that obtains the value \(x^{(i)} \oplus k^{(0)} \) and can successfully impersonate a tag after observing an average of 70 transactions for a 128-bit key. The second attack is independent of key cycles and can fully recover \(k^{(0)} \) in 1,092 expected guesses.

2.1 Implementation

We implemented the 128-bit key length example [9] and randomly generated 1,000 sessions with 10,000 transactions per session, i.e. we randomly generated 1,000 different \(k^{(0)} \) values and the next 10,000 keys using the function \(F(k^{(i)}) \). Figure 2 shows that the session keys \(k^{(1)}, k^{(2)}, \ldots, k^{(10,000)} \) cycle after an average of 68 keys. That is, the function resulted in a repeating pattern of session keys after an average of 68 sessions. For a cycle period of \(c \), \(k^{(i)} = k^{(i+c)} \). The average cycle period is 2, meaning that \(k^{(i)} = k^{(i+2)} \). The minimum cycle period was 1, which occurred in 31.9\% of our results. All of the observed keys eventually repeat, and the maximum cycle period was 36, which occurred in only 1 out of the 1,000 sessions.

Session key cycles lead to our first attack, which allows an active adversary to successfully impersonate a tag. We also developed active and passive attacks that, independent of session key cycles, allow an adversary to gain full knowledge of \(k^{(0)} \).

2.2 Repeated Keys Attack

An active adversary, Mallory, can learn \(k^{(i)} \oplus k^{(0)} \) after observing one challenge/response pair. As shown in Figure 1, Mallory learns \(a^{(i)} = x^{(i)} \oplus k^{(i)} \) and \(b^{(i)} = x^{(i)} \oplus k^{(0)} \), and can calculate their bitwise difference to learn \(k^{(i)} \oplus k^{(0)} \). She builds a table with \(k^{(i)} \oplus k^{(0)}, k^{(i+1)} \oplus k^{(0)}, k^{(i+2)} \oplus k^{(0)} \), etc., rows. Two rows will have the same value when the session key repeats, allowing the attacker to determine the key cycle period. Without loss of generality, assume that the key cycle period is 2. Thus, \(k^{(i-2)} = k^{(i)} \). As Figure 1 shows, when the reader sends \(x^{(i)} \oplus k^{(i)} \), the attacker can calculate \((x^{(i)} \oplus k^{(i)}) \oplus (k^{(i-2)} \oplus k^{(0)}) = x^{(i)} \oplus k^{(0)} \). This forms a valid response which the attacker can then broadcast to the reader, thus successfully impersonating a valid tag.

In 68.8\% of the sessions we generated, the key

Figure 1. Steps 1-4 of VB Protocol 1. The tag knows \(k^{(0)} \) and the function to calculate \(k^{(i)} \). The tag uses \(a^{(i)}, k^{(i)}, \) and \(k^{(0)} \) to form a valid response \(b^{(i)} \). Steps 2a and 3a show how an active adversary can implement the Repeated Keys Attack to successfully impersonate a tag. Mallory knows \(k^{(i-2)} \oplus k^{(0)} \) after observing a challenge/response pair from an earlier transaction between the reader and tag. In this example, the session key is repeated every 2 cycles. Thus, \(k^{(i)} = k^{(i-2)} \), and Mallory can form a valid response without knowing \(k^{(i)} \) or \(k^{(0)} \).
cycle period is 2 or less. If the attacker begins eavesdropping with the first transaction between the reader and tag, he can detect a repeated key cycle and impersonate a tag after 70 transactions. If the adversary begins eavesdropping after 68 transactions, then, on average, he can impersonate the tag after observing just 3 transactions.

2.3 Nibble Attack

Based on properties of the session key function $F(k^{(i)})$, active and passive attacks can determine the correct $k^{(0)}$ value with high probability after observing an expected 1,092 transactions.

Passive attack: Vajda and Buttyán [9] give an example using 128-bit key lengths. The function $k^{(i+1)} = F(k^{(i)})$ is defined as follows. First cut each byte of $k^{(i)}$ in half to obtain two nibbles. The left nibbles $k^{(i)}_{0,L}, k^{(i)}_{1,L}, \ldots, k^{(i)}_{15,L}$ form $k^{(i)}_L$ and the right nibbles $k^{(i)}_{0,R}, k^{(i)}_{1,R}, \ldots, k^{(i)}_{15,R}$ form $k^{(i)}_R$. $k^{(i+1)}_R$ is formed by swapping the 0^{th} and $k^{(i)}_{0,R}$th, 1^{st} and $k^{(i)}_{1,L}$th, \ldots, 15^{th} and $k^{(i)}_{15,L}$th elements of $k^{(i+1)}_R$. $k^{(i+1)}_L$ is formed in a similar way using $k^{(i)}_L$.

Observe that if $k^{(i)}_{0,L} = 0$, then the first four bits of $k^{(i)}$ are equal to 0. The 0^{th} and the $k^{(i)}_{0,L}$th elements of $k^{(i)}_R$ are switched. Hence, $x^{(i)}_{0,R} = k^{(i+1)}_{0,R}$ and the function F resulted in no change to $k^{(i)}_L$.

and thus we know that $k^{(i)}_{0,L} = 0$. This event will happen for roughly a $1/16^{th}$-fraction of values i. Knowing $k^{(i)}_{0,L} = 0$, we can compute $x^{(i)}_{0,R}$ and therefore $k^{(i)}_{0,R}$.

As noted in [9], it is possible for a passive adversary to learn $k^{(i)} \oplus k^{(i+1)}$ after observing two consecutive runs of the protocol. Mallory constructs a table as in Figure 3 and looks at the Indicator column for ‘0000’ in the second nibble. When this occurs, she knows that $k^{(i)}_{0,R} = k^{(i+1)}_{0,R}$ because their bitwise difference is ‘0000.’ Thus, she also knows that $k^{(i)}_{0,L} = 0$. She can use column 1 to calculate $x^{(i)}_{0,L}$ and then use column 2 to determine $k^{(i)}_{0,L}$.

Using similar reasoning, she can find rows in the Indicator column where the fourth nibble is ‘0000,’ which indicates that $k^{(i)}_{1,R} = k^{(i+1)}_{1,R}$. Thus $k^{(i)}_{1,L} = 1$ and she can use the table to calculate $k^{(i)}_{1,L}$. She can use this reasoning to find all nibbles of $k^{(i)}_{0,L}$ and $k^{(i)}_R$ and learn the full value of $k^{(i)}$, thus breaking the scheme completely.

Active attack: Our passive attack algorithm can also be employed as an active attack. Mallory first sends the tag a string of 0s. When a tag receives a challenge $a^{(i)}$, it always responds with $a^{(i)} \oplus k^{(i)} \oplus k^{(0)}$. Thus Mallory will learn $k^{(i)} \oplus k^{(0)}$ by sending a challenge of all 0s to the tag. She can continue to sends challenges of all 0s to learn $k^{(i+1)} \oplus k^{(0)}, k^{(i+2)} \oplus k^{(0)}$, etc. and construct a table similar to Figure 3. The same analysis from
the passive attack can be employed to determine the full value of $k^{(0)}$.

Remark There are cases in which a nibble is swapped twice, such that $k^{(0)}_{0,R} = k^{(1)}_{0,R}$ and $k^{(0)}_{0,L} \neq 0$. Thus, Mallory needs to find two cases with a ‘0000’ nibble. If the values calculated for $k^{(0)}_{0,R}$ agree, then this is the correct value with high probability. Otherwise, she must find a third nibble and take the majority value to eliminate false positives. A false positive occurs in $\frac{1}{15}$ cases, because the ‘0000’ actually occurs in one of the other 15 positions. Mallory must find two ‘0000’ nibbles (16 expected trials to find each) and find a third in $\frac{1}{15} + \frac{1}{15}$ of the cases. This results in $32 \times (16 + 16 + 16 + (\frac{1}{15} + \frac{1}{15})) = 1,092$ expected trials to fully recover all 32 nibbles of $k^{(0)}$.

3 **Vajda and Buttyán Protocol 2**

Protocol 2 is a challenge-response protocol in which the tag and reader share two secrets, k_L and k_R.

To construct a challenge, the reader selects two bitstrings x and y uniformly at random. The reader transmits $a = x \oplus k_L$ and $b = y \oplus k_R$ to the tag. Because x and y are random, a and b are also random. In an information-theoretic sense, the pair (a, b) reveals nothing about the secrets k_L and k_R.

The secrets k_L and k_R effectively act as “masks” to conceal the challenge values x and y. The tag uses its knowledge of k_L and k_R to extract $x = a \oplus k_L$ and $y = b \oplus k_R$. The tag then responds to the reader with selected portions of x indexed by y, as detailed below. Knowing x and y, the reader can verify the correctness of the tag’s response.

While a challenge alone in this protocol leaks no information, a challenge-response pair does leak a considerable amount. Vajda and Buttyán note this leakage, but hypothesize that it is about one bit per protocol invocation. They suggest, therefore, that their challenge-response protocol may be suitable for practical scenarios in which hundreds of accesses to a tag are impractical for an attacker.

We demonstrate an active attack against Protocol 2 that recovers k_L and k_R almost optimally, in the sense that the attack extracts nearly one bit of information from every bit emitted by the tag. In other words, the security of Protocol 2 is nearly no better than that of a protocol in which the tag directly reveals a portion of its key in response to a challenge.

Protocol details: Let l and m be security parameters. The secret k_L has bit-length l, a power of 2. The other secret, k_R, has bit-length $m \log_2 l$. Let $k_R = k_{R,1} \parallel \ldots \parallel k_{R,m}$, i.e., we partition the secret into m substrings, each of bit-length $\log_2 l$.

As we have explained, x and y are random bit strings. By analogy with our notation for k_R, let $y = y_1 \parallel \ldots \parallel y_m$. A challenge consists of a pair $(a = x \oplus k_L, b = y \oplus k_R)$. The response of the tag comprises selected bits of x; the tag determines which bits of x to return to the reader by treating y_1, \ldots, y_m as indices into x. Let $x[i]$ denote the i^{th} bit of x for $0 \leq i \leq \log_2 l$ (with either big-endian or little-endian notation). See Figure 4 for a concise protocol specification.

Overview of active attack: Vajda and Buttyán describe an active attack involving l queries to the tag that recovers k_L. We refer the reader to [9] for details. As an example, they consider $l = 256$ and $m = 16$. They hypothesize that an active attacker requires at least 256 queries to break their scheme. We show that considerably fewer queries suffice.

The active attack that we describe first recovers k_R in $\log_2 l + 1$ queries—9 queries for the suggested parameters $l = 256$ and $m = 16$. The attack then fully recovers k_L with at most $\lceil l/m \rceil$ additional queries—i.e., 16 queries for the suggested parameters in [9], amounting to a total of 25 queries for the full attack.

The attack is nearly optimal in the following sense. The total bit length of the shared secrets k_R and k_L is $D = l + m \log_2 l$, while our attack involves a total bit output from the tag of $\lceil l/m \rceil + \log_2 l + 1)m \leq D + 2m$ bits. Viewed another way, our attack is optimal to within two queries—and only one query when l is divisible by
Figure 3. Information leaked by Protocol 1. The first and second columns are the observed challenge and response, respectively. The Leak column is the bitwise difference between the first two columns, and the Indicator column is the bitwise difference between rows in the Leak column. When our algorithm finds a '0000' nibble in the Indicator column, it combines this with information from the Leak column to calculate a nibble of $k^{(0)}$.

m. (The attack could be further optimized somewhat, but the gains would be small, of course.)

Attack details: Let us denote by $a^{(j)}, b^{(j)}$, and $c^{(j)}$ the protocol values in the j^{th} query, for $j = 0, 1, \ldots, \log_2 l$. Let $c^{(j)}[i]$ denote the i^{th} bit of the tag response.

The attack is as follows. Let $j’ = \log_2 l - j$. We construct the vector $a^{(j)}$ as a sequence of 2^j '0' bits, followed by 2^j '1' bits, then 2^j '0' bits, etc., up to the full length of l bits. In other words, we let $a^{(0)} = 00 \ldots 00$, i.e., the all-0s string. We let $a^{(1)} = 00 \ldots 0011 \ldots 11$, i.e., the first half consists of 0s, then second half of 1s. The final query, $a^{(\log_2 l)}$, consists of alternating '0' and '1' bits.

For all j, let $b^{(j)} = \overline{0}$, i.e., b is a string of 0 bits. (This is a matter of convenience. It is easy to modify the attack such that b is any desired value in any query.) In query q, we challenge the tag with the pair $(a^{(j)}, b^{(j)})$.

Since $b^{(j)} = \overline{0}$, for any i, we have $y_i = k_{R,i}$. Therefore, $c[i] = x[k_{R,i}]$. Now observe that for any $0 \leq i \leq \log_2 l$, if the leading bit $k_{R,i}[0] = 0$, then $c^{(0)}[i] = c^{(1)}[i]$, since $k_{R,i}$ indexes the first half of the vector a, which is constant across the 0^{th} and 1^{st} queries. Otherwise $c^{(0)}[i] \neq c^{(1)}[i]$. Similarly, if $k_{R,i}[1] = 0$, then we observe $c^{(0)}[i] = c^{(2)}[i]$; otherwise $c^{(0)}[i] \neq c^{(2)}[i]$. Similar comparisons across queries reveal the remaining bits of $k_{R,i}$. Thus, for any i, $\log_2 l + 1$ queries suffice to recover $k_{R,i}$ in its entirety. Furthermore, we may recover $k_{R,i}$ for every $1 \leq i \leq m$ independently in parallel. Hence, with $\log_2 l + 1$ queries, we may recover k_R completely.

With knowledge of k_R, we can quickly recover k_L. Suppose (a, b, c) is a given challenge-response tuple. Using k_R, we can create a value b that corresponds to any sequence of indices y_1, \ldots, y_m we desire. We know that $c[i] = x[y_i]$. Therefore, $c[i] = a[y_i] \oplus k_L[y_i]$, and hence $k_L[y_i] = a[y_i] \oplus c[i]$. In other words, by setting b as desired and using a random vector a, we may recover any m desired bits in k_L. Thus, $[l/m]$ queries suffices to recover all of x_L.

4 Related Work

Other cryptographic protocols have been designed for resource-constrained devices. Grain [5] is a lightweight stream cipher that was designed for hardware applications with restricted resources, such as memory and power consumption, and may be suitable for use in RFID tags. Compared to the VB protocols, Grain has a more intricate encryption algorithm that employs a linear feedback shift register. A cryptanalysis [1, 8] of Grain uses linear approximations of the keystream output to recover the 80-bit key in 2^{43} computations. In the simpler VB XOR protocol, the 128-bit session key can be recovered in an expected 1,092 transactions.

The Hopper and Blum (HB) protocol and an augmented version, HB+, have been applied to lightweight RFID tags and are secure against passive and active adversaries under the Learning Parity with Noise hardness assumption [6, 10, 3]. The HB+ protocol was shown to be vulnerable to an active attack in a larger adversarial model [4], but both HB and HB+ are secure under parallel and concurrent executions [7].

Texas Instruments developed a proprietary cryptographic protocol for RFID devices that was implemented in vehicle immobilizer systems and the Exxon Mobile SpeedPass. The importance of using secure cryptographic protocols was highlighted by a cryptanalysis of the Texas Instruments protocol, which showed that an attacker could effectively
impersonate an RFID device [2].

5 Conclusion

The Vajda and Buttyán Protocols 1 and 2 have design weaknesses that render the protocols inadequate for tag authentication under reasonable threat models. With few resources, active and passive attackers can determine the session keys for both of the protocols — breaking the schemes completely.

Our implementation and measurement of Protocol 1 helped to reveal weaknesses in the generation of session keys. It is challenging to design cryptographic methods on low-cost RFID tags that can withstand a simple adversary. Researchers are likely to continue proposing new cryptographic methods for the uniquely constrained environment and untraditional threat model of RFID tags. Therefore, we urge researchers to provide at a minimum a reference implementation and basic measurements so that security flaws can be detected early in the design process. Statistical measurements cannot prove a scheme to be secure; for instance, linear congruential number generators are statistically random yet insecure. But statistical measurements can help to identify simple flaws that render a candidate scheme cryptographically insecure.

6 Acknowledgments

This research was partially supported by a Ford Foundation Predoctoral Diversity Fellowship and a grant from the National Science Foundation CNS-0627529. We would also like to thank our anonymous reviewers and Thomas Heydt-Benjamin for helpful suggestions.

References

